Preparation problems


13-19. In the Olympic hammer throw, a contestant whirls a 7.3-kg steel ball on the end of a 1.2-m cable. If the contestant's arms reach an additional 90 cm from his axis of rotation, and if the speed of the ball just prior to release is 27 m/s, what is the magnitude of its angular momentum?


Solution:

We can use the definition of angular momentum from our constants and equation sheet:

®
L
 
= ®
r
 
× ®
p
 
Since r and p are perpendicular, this simplifies to
L = r ·p = r m v
We know r = 2.1 m, m = 7.3 kg, and v = 27 m/s, giving us
L
=
(2.1  m)(7.3  kg)(27  m/s)
L
=
414  m/s


13-21. A gymnast of rotational inertia 62 kg-m2 is tumbling head over heels. If her angular momentum is 470 kg-m2/s, what is her angular speed?


Solution:

We can use the definition of angular momentum from our constants and equation sheet:

®
L
 
= I ®
w
 
We can then simply solve for w as
(470  kg ·m2/s)
=
(62  kg ·m2)  w
w
=
7.6  rad/s



Follow-up problems


13-11. A force F = 2.0 i - 8.0j N is applied at the point x = 1.2 m, y = 3.6 m. Find the resulting torque about the origin.


Solution:

We can use our definition of torque:

®
t
 
= ®
r
 
× ®
F
 
This gives us
®
t
 
=
ê
ê
ê
ê
ê
ê
ê
^
i
 
(-) ^
j
 
^
k
 
1.2  m
3.6  m
0  m
2.0  N
-8.0  N
0  N
ê
ê
ê
ê
ê
ê
ê
®
t
 
=
[(1.2  m)(-8.0  N) - (2.0  N)(3.6  m)]   ^
k
 
®
t
 
=
-16.8  N ·m   ^
k
 


13-16. Find the cross product of the vectors A = i - 2j + 3k and B = 2i + 4j + 2k.


Solution:

We simply must perform the cross product

®
C
 
= ®
A
 
× ®
B
 
This gives us
®
C
 
=
ê
ê
ê
ê
ê
ê
ê
^
i
 
(-) ^
j
 
^
k
 
1
-2
3
2
4
2
ê
ê
ê
ê
ê
ê
ê
=
[(-2)(2)-(3)(4)]   ^
i
 
- [(1)(2)-(3)(2)]   ^
j
 
+ [(1)(4)-(-2)(2)]   ^
k
 
®
C
 
=
-16   ^
i
 
+ 4   ^
j
 
+ 8   ^
k
 

Physics 110 Home Page Physics 110 Honors Home Page

Solutions translated from TEX by TTH, version 1.57.