Rules of Engagement

Kinematic Motion Problems

- 1. Draw a motion diagram
- 2. Draw Reference Frame
- 3. Label Positions A, B, etc
- 4. Find pos, vel, time for each position
- 5. Find equation & solve

Force Problems

- 1. Draw picture
- 2. Draw ref. Frame
- 3. Draw FBD
- 4. Redraw force diagram replacing the object by a dot.
- 5. Resolve all force into x and y components
- 6. Show $\sum F_x = ma_x$, and $\sum F_v = ma_v$
- 7. Solve for unknown

Projectile Motion Problems

- 1. Draw picture
- 2. Draw ref. Frame
- 3. Mark on picture points A and B
- 4. Write down in neat column form values for position, velocity, acceleration and time in both x and y directions at both points A & B..
- 5. Remember, $x_B = v_{Ax}\Delta t + x_A$ because $a_x = 0$
- 6. Remember, $y_B = -.5 \text{ g } \Delta t^2 + v_{Av} \Delta t + y_A \text{ because}$ the object is just a falling body in the vertical direction.
- 7. Solve for the required quantity.

Momentum Problems

- 1. Draw 2 pictures --- before and after
- 2. Indicate system!!
- 3. Draw the reference frame
- 4. Indicate on picture initial and final values of momentum
- 5. Solve

Work Problems

- 1. Draw figure
- 2. Circle the system
- 3. Draw ref. Frame and show 0 ref. Level
- 4. Draw bar chart
- 5. Write equations and solve

Equilibrium Problems

- 1.Draw picture
- 2. Draw ref. Frame
- 3. Draw FBD
- 4. Resolve all force into x and y components
- 5. Show $\sum F_x =$ _____=0, and $\sum F_y =$ _____ =0
- 6. Choose a pivot point P
- 7. Show $\sum \tau =$
- 8. Solve system of equations for unknowns

Circular Motion Problems

- 1. Draw FBD with one axis in the radial direction.
- 2. Make **TOWARD** the center the positive direction.
- 3. Sum forces in radial direction equals m v²/r.
- 4. Solve for unknown

Rotational Dynamics problems.

- 1. Draw a FBD.
- Set ∑ T = ____ = Ia.
 Set ∑ F = ___ = ma, keeping in mind that a is not always equal to $r\alpha$, but may be $\pm r\alpha$, depending upon the reference frame. And remember, if rotation is clockwise, $\alpha < 0$!
- 4. Solve for unknown.

Buoyancy Problems

- 1. Draw a picture.
- 2. Remember F_B = the weight of the fluid displaced.
- 3. $\sum F_x =$ _____ = 0
- 4. Solve for x.